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In many psychological questionnaires the need to analyze empirical data raises the

fundamental problem of possible fake or fraudulent observations in the data. This

aspect is particularly relevant for researchers working on sensitive topics such as,

for example, risky sexual behaviors and drug addictions. Our contribution presents

a new probabilistic approach, called Sample Generation by Replacement (SGR), to

address the problem of evaluating the sensitivity of 8 commonly used SEM-based

fit indices (Goodness of Fit Index, GFI; Adjusted Goodness of Fit Index, AGFI;

Expected Cross Validation Index, ECVI; Standardized Root-Mean-Square Residual

Index, SRMR; Root-Mean-Square Error of Approximation, RMSEA; Comparative

Fit Index, CFI; Nonnormed Fit Index, NNFI; and Normed Fit Index, NFI) to

fake-good ordinal data. We used SGR to perform a simulation study involving

3 different SEM models, 2 sample size conditions, and 2 estimation methods:

maximum likelihood (ML) and weighted least squares (WLS). Our results show

that the incremental fit indices (CFI, NNFI, and NFI) are clearly more sensitive

to fake perturbation than the absolute fit indices (GFI, AGFI, and ECVI). Overall,

NFI turned out to be the best and most reliable fit index. We also applied SGR to

real behavioral data on (non)compliance in liver transplant patients.

Correspondence concerning this article should be addressed to Luigi Lombardi, Department of

Cognitive Science and Education, University of Trento, Corso Bettini 31, I-38068 Rovereto (TN),

Italy. E-mail: luigi.lombardi@unitn.it

519

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
ita

 d
i T

re
nt

o]
 a

t 2
3:

34
 1

5 
A

ug
us

t 2
01

2 



520 LOMBARDI AND PASTORE

A major problem in psychological measurements is that in some circumstances

there is no basis to assume that participants are responding honestly. In real-

life contexts, some individuals tend to distort their behaviors or actions in

order to reach specific goals. For example, in personnel selection some job

applicants may misrepresent themselves on a personality test hoping to in-

crease the likelihood of being offered a job (Anderson, Warner, & Spector,

1984). Similarly, in the administration of diagnostic tests individuals often at-

tempt to malinger posttraumatic stress disorder in order to secure financial

gain and/or treatment or to avoid being charged with a crime (Hall & Hall,

2007).

Researchers interested in the study of human behavior in contexts like psy-

chology (Furedy & Ben-Shakhar, 1991; Hopwood, Talbert, Morey, & Rogers,

2008; Lykken, 1960; Sartori, Agosta, Zogmaister, Ferrara, & Castiello, 2008),

organizational and social science (Van der Geest & Sarkodie, 1998), psychiatry

(Beaber, Marston, Michelli, & Mills, 1985), forensic medicine (Gray, MacCul-

loch, Smith, Morris, & Snowden, 2003; Mossman & Hart, 1996), scientific

frauds (Marshall, 2000), and economics (Crawford, 2003; Sobel, 1985) face

similar problems when analyzing and interpreting empirical data. In particular,

possible fake data confront the researcher with a crucial question: If data in-

cluded fake data points, would the answer to the research question be different

from what it actually is? Even in the easiest case—that is, randomly fake

data—the answer is not necessarily obvious as even the random perturbation

of data constitutes biased information, which weakens the accuracy of scientific

inferences.

A case of particular empirical interest in multivariate analysis of behavioral

data is the situation in which a researcher wants to evaluate the uncertainty

associated to the acceptability of a given structural equation model (SEM) as

a result of propagation through the model of fake observations in input data.

In this case the crucial question can be rewritten as the following: If the data

contained q% fake observations, what would the chance be that the model is

still a good one? A variety of fit indices can be used to evaluate the overall fit

of a structural equation model (e.g., Browne & Cudeck, 1993; Hu & Bentler,

1998; Jöreskog & Sörbom, 1996a). Because fit indices are usually designed to

detect model misspecification, but they are not designed to detect perturbation

in the data, it is certainly legitimate to wonder whether fit indices are reliably

sensitive also to fake observations. In particular, we would expect that a good

fit index should approach its maximum under correct model specification and

uncorrupted data but also degrade substantially under massive data perturbation

(i.e., presence of fake observations in the data set).

The great majority of past research on structural equation modeling has

focused on several aspects related to the use and interpretation of model fit

indices. Most studies based on Monte Carlo simulations examined the behaviors
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SENSITIVITY OF FIT INDICES TO FAKE DATA PERTURBATION 521

of the fit indices under different data and model conditions, such as, for ex-

ample, sample size, continuous versus ordinal data, estimation methods, model

misspecification, and model types (e.g., Enders & Finley, 2003; Fan & Sivo,

2005, 2007; Fan, Thompson, & Wang, 1999; Fan & Wang, 1998; Gerbing &

Anderson, 1993; Hu & Bentler, 1998, 1999; Marsh, Hau, & Wen, 2004; Wu

& West, 2010; Yu & Muthén, 2002). However, there is little information about

how fit indices will be sensitive to fake perturbations or how fake data may

interact with other relevant factors to affect model fit. In this article we try to fill

this gap by proposing a new probabilistic approach, called Sample Generation

by Replacements (SGR), to deal with possibly fake data in SEM models. In

particular, we examined in an SGR simulation study the sensitivity of eight

commonly used SEM-based fit indices (Goodness of Fit Index, GFI; Adjusted

Goodness of Fit Index, AGFI; Expected Cross Validation Index, ECVI; Stan-

dardized Root-Mean-Square Residual Index, SRMR; Root-Mean-Square Error

of Approximation, RMSEA; Comparative Fit Index, CFI; Nonnormed Fit Index,

NNFI; and Normed Fit Index, NFI) to fake-good ordinal data in three different

SEM models, two sample size conditions, and two different estimation methods.

In the simulation design, SGR was used to generate different levels of ordinal

data perturbations based on a simple model of mimicking faking good behaviors

(deception).

The article is organized as follows: The first part of the article outlines the

SGR approach and introduces the models of faking and the target SEM models

used in this study. The second part describes the SGR simulation and reports

results about the fit indices’ performances. The third part illustrates our method

with an application to real data about (non)compliance in transplant patients.

Finally, the fourth part presents conclusions and some relevant comments about

limitations, potential new applications, and extensions of the SGR approach.

SAMPLE GENERATION BY REPLACEMENT (SGR)

SGR is a probabilistic resampling procedure that can be applied to dis-

crete/ordinal data with a restricted number of values (e.g., Likert-type scales) and

generalizes a previous deterministic procedure to simulate data replacement in

discrete data arrays (Lombardi, Pastore, & Nucci, 2004). Variables characterized

by an ordinal level of measurement are common in many empirical investigations

within the social and behavioral sciences. This type of variables are also used

to assess many psychological constructs based on self-reported measures. So,

ordinal variables would seem to be a natural choice to study the effect of fake

responses in empirical data.

With regard to the fake-data problem in general, we think of the original

data as being represented by an I � J matrix D, that is to say, I observations
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522 LOMBARDI AND PASTORE

(participants) each containing J elements (participant’s responses). We assume

that entry dij of D (i D 1; : : : ; I ;j D 1; : : : ; J ) takes values on a small

ordinal range VQ D f1; 2; : : : ; Qg (e.g., Q D 5 for 5-point Likert items). In

particular, let di be the .1 � J / array of D denoting the pattern of responses

of participant i . The response pattern di is a multidimensional ordinal random

variable with probability distribution p.di j™M /, where ™M indicates the vector

of parameters of the probabilistic model of the data. Moreover, we assume

that the response patterns are independent and identically distributed (i.i.d.)

observations. Therefore, the data matrix D D Œd1; d2; : : : ; dI �T is drawn from

the joint probability distribution

p.Dj™M / D

I
Y

iD1

p.di j™M /: (1)

In the multivariate latent variable framework there are two main approaches for

modeling ordinal variables according to Equation (1). The first is the Underlying

Variable Approach (UVA) developed within the structural equation modeling

framework (Jöreskog & Sörbom, 1996b; Muthén, 1984). This approach assumes

that the observed ordinal variables are treated as metric through assumed un-

derlying normal variables. In the UVA context the vector of parameters ™M

represents the true population parameters of an SEM model. The second ap-

proach is Item Response Theory (IRT) where the probabilistic model of the

data is characterized by the true latent parameters ™M of a graded response IRT

model (Moustaki & Knott, 2000; Samejima, 1969). Because in this contribution

we are interested in evaluating SEM-based fit indices, we limit our attention to

the first approach.

The main idea of our replacement approach is to construct a new I � J

ordinal data matrix F, called the fake data matrix of D, by manipulating each

element dij in D according to a replacement probability distribution. Let fi be

the .1 � J / array of F denoting the pattern of fake responses of participant i .

The fake response pattern fi is a multidimensional ordinal random variable with

conditional replacement probability distribution

p.fi jdi ; ™F / D

J
Y

j D1

p.fij jdij ; ™F /; i D 1; : : : ; I (2)

where ™F indicates the vector of parameters of the probabilistic faking model.

In the conditional replacement probability distributions we assume that each

fake response fij only depends on the corresponding data observation dij and

the model parameter ™F . Because the patterns of fake responses are also i.i.d.
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SENSITIVITY OF FIT INDICES TO FAKE DATA PERTURBATION 523

observations, the fake data matrix F D Œf1; f2; : : : ; fI �T is drawn from the joint

probability distribution

p.FjD; ™F / D

I
Y

iD1

p.fi jdi ; ™F / (3)

D

I
Y

iD1

J
Y

j D1

p.fij jdij ; ™F /: (4)

It is important to note that the faking model integrates together two different

kinds of information: (a) the observed data D representing variables’ features and

relations generated according to Equation (1) and (b) the model parameter, ™F ,

which characterizes some relevant properties of the faking model. In general, ™F

represents hypothetical a priori knowledge about the distribution of faking (e.g.,

the chance of observing a fake observation in the data) or empirically based

knowledge about the process of faking (e.g., the direction of faking—fake good

vs. fake bad). In sum, SGR is characterized by a two-stage sampling procedure

based on two distinct generative models: the model defining the process that

generates the data prior to any fake perturbation and the model representing the

faking process to perturb the data. By repeatedly sampling data from Equations

(1–4) we can generate the so called fake data sample (FDS). We can then study

the distribution of some relevant statistics computed on this FDS.

SIMULATION STUDY

The SGR approach can be easily reformulated to study the effect of possible

fake data on the performances of SEM-based fit indices. In this special case,

we assume that the original data D has been generated by a target SEM model

(UVA framework). More precisely, D is a random sample from the statistical

population determined by the true population parameters ™M of the SEM model.

In this context, an SGR analysis allows us to evaluate SEM-based fit indices

under the corresponding FDS. The perturbation is carried out by means of a joint

replacement probability distribution that mimics the faking process of interest.

Finally, the distribution of results for the fit indices is evaluated and eventually

compared with the results observed for the original data sets prior to any fake

perturbation.

In the following two sections we introduce the model of faking and the target

SEM models that we used in this study for representing the faking process and

the original data generation processes, respectively.
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524 LOMBARDI AND PASTORE

A Model of Faking

Fake data may alter a large variety of self-report measures. This problem is

particularly relevant for researchers working on sensitive topics such as, for ex-

ample, rash driving, risky sexual behavior, drug addictions, tax evasion, political

preferences, and personnel selection. In this article we limit our attention to a

simple, but important scenario of faking: the so called fake-good (McFarland &

Ryan, 2000; Paulhus, 1984). Note that the fake-good (as well as the fake-bad)

scenario entails a conditional replacement model in which the conditioning is a

function of response polarity.

We used a simple parametrized replacement distribution to model the fake-

good scenario described earlier. The model is called the uniform support fake-

good distribution and represents a context in which responses are exclusively

subject to positive feigning: fij � dij .i D 1; : : : ; I I j D 1; : : : ; J /. In par-

ticular,

pg.fij D q0jdij D q; ™F / D

8

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

<

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

:

1; q D q0 D Q

™F

Q � q
; 1 � q < q0 � Q

1 � ™F ; 1 � q D q0 < Q

0; 1 � q0 < q � Q

(5)

with ™F being the overall probability of replacement. Equation (5) denotes the

conditional probability of replacing an original observed value q in entry .i; j / of

D with the new value q0. Note that this model does not allow us to substitute the

original observed value with lower ones. A particular case is when ™F D 0. For

this special condition the fake data matrix F reduces to the original data matrix D

(see Equation (5)). Moreover, notice that the replacement model is characterized

by a uniform probabilistic kernel. More precisely, in the fake-good model all the

values q0 > q are assumed to be equally likely in the process of replacement. In

sum, the model represents a purely random but polarized malingering process

(PRPP).

Some important comments are in order concerning the rationale behind the us-

age of PRPP to simulate fake data. First, PRPP is based on two basic properties:

(a) the principle of indifference and (b) the asymmetry of the faking behavior.

The first property reflects that in the absence of further knowledge all entries in

D as well as all candidate replacement values are assumed to be equally likely

in the process of replacement. In other words, PRPP assumes a kind of random

world model that can be used whenever we deal with randomly fake data. The

principle of indifference requires the simplest quantitative representation for

the replacement process. The second property suggests that fake responses are

D
ow

nl
oa

de
d 

by
 [U

ni
ve

rs
ita

 d
i T

re
nt

o]
 a

t 2
3:

34
 1

5 
A

ug
us

t 2
01

2 



SENSITIVITY OF FIT INDICES TO FAKE DATA PERTURBATION 525

mainly due to asymmetrical processes. For example, fake-good (resp. fake-bad)

responses can be characterized by a positive (resp. negative) polarity with respect

to the original fake-uncorrupted responses.

The great majority of past and current research on faking has focused on the

asymmetrical/qualitative properties of faking behavior (e.g., McFarland & Ryan,

2000; Paulhus, 1984). However, there is little knowledge about the distribu-

tional/quantitative characteristics of ordinal fake responses. In our opinion, PRPP

can represent a good compromise between the lack of information about the

distributional properties of faking and the well-known asymmetrical qualitative

properties typical of behaviors such as malingering, defensiveness, and self-

deception. Finally, although some empirical contexts may require different model

assumptions as well as different fake distribution conditions, we wanted to

understand the impact of fake data under the most simple and less invasive

distributional conditions first.

Target SEM Models

We selected three target SEM models (see Figure 1) that are commonly encoun-

tered in applied research (Curran, Bollen, Paxton, Kirby, & Chen, 2002; Paxton,

Curran, Bollen, Kirby, & Chen, 2001) to representing the process that generates

the data prior to any fake perturbation. The first model, Model 1, contained

9 measured variables (y1; : : : ; y9) and 3 latent variables (˜1, ˜2, and ˜3). Each

measured variable loaded on a single latent variable. Further, ˜2 was regressed on

˜1, and ˜3 was regressed on ˜2. The second model, Model 2, had the same basic

structure as Model 1 but contained 15 measured variables (y1; : : : ; y15) with five

indicators per latent variable. Finally, Model 3 contained 13 measured variables.

The endogenous variables (y1; : : : ; y9) had the same measurement structure as

Model 1 (three indicators per latent variable), whereas the exogenous variables

(x1; : : : ; x4) loaded on a new latent variable (Ÿ1), which, in turn, affected ˜1.

We defined the values of population parameters to be homogeneous across

all three model specifications. For Model 1, all factor loadings (œy) were set to

.7 and error variances (™–) were set to .5. The regression parameters among the

latent variables (“) were set to a value of .6. For Model 2, all the values were

exactly the same as those of Model 1 except for the addition of two measured

variables per latent variable. Finally, for Model 3, we included four exogenous

variables and set relative factor loadings (œx) to .95 and error variance (™•) to

.09. The regression parameters among the latent variables (“ and ”) were set to

a value of .6.

The models also differed in terms of propagation of fake perturbation in the

data. In Model 1 and Model 2 the fake perturbation was propagated through

all the observed variables (9 for Model 1 and 15 for Model 2). By contrast, in

Model 3 the fake perturbation was propagated through the endogenous variables,
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526 LOMBARDI AND PASTORE

FIGURE 1 Target SEM models.
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SENSITIVITY OF FIT INDICES TO FAKE DATA PERTURBATION 527

y1; : : : ; y9, only, whereas the exogenous variables, x1; : : : ; x4, were considered

fake independent. In sum, for a fixed probability of replacement ™F and a fixed

sample size I , two relevant conditions were observed:

1. Model 1 and Model 2 were affected by the same overall probability ™F of

fake perturbation, but they differed in terms of total amount of fake data:

™F � .I � 9/ for Model 1 and ™F � .I � 15/ for Model 2.

2. Model 1 and Model 3 were affected by a different overall probability of

fake perturbation (™F for Model 1 and ™F � I �9
I �.9C4/

for Model 3), but they

did not differ in terms of total amount of fake data (™F � .I �9/ for both).

These two conditions will be separately evaluated in our simulation study. In

particular, we expect that a good fit index should be less sensitive to Model 3

compared with Model 1, as the first contained proportionally less fake observa-

tions than the latter. By contrast, a good fit index should be equally sensitive to

Model 1 and Model 2 because model size (defined as the number of observed

variables in the model) should not affect the performance of a fit index (e.g.,

Fan & Sivo, 2007; Kenny & McCoach, 2003).

Types of Fit Indices

Eight fit indices were examined in this study: Goodness of Fit Index (GFI), Ad-

justed Goodness of Fit Index (AGFI), Expected Cross Validation Index (ECVI),

Standardized Root-Mean-Square Residual Index (SRMR), Root-Mean-Square

Error of Approximation (RMSEA), Comparative Fit Index (CFI), Nonnormed

Fit Index (NNFI or TLI), and Normed Fit Index (NFI). This group represents

a collection of widely known and commonly used stand-alone fit indices in

the SEM literature. The basic properties of each of the eight fit indices are

summarized in Table 1. The definitions and reviews of these fit indices are

easily available in the SEM literature (e.g., Browne & Cudeck, 1993; Fan &

Wang, 1998; Hu & Bentler, 1998; Sun, 2005; Yuan, 2005).

Simulation Design and Data Conditions

Although other studies may typically involve a wider spectrum of SEM models,

in this study we wanted to understand the impact of fake data on the fit indices

under empirical scenarios that are commonly encountered in applied research

(Curran et al., 2002; Paxton et al., 2001). This also means fitting the models

directly on Likert-type data instead of standard continuous variables. In our

simulation study we opted for a 5-point ordinal scale, which is very common in

many empirical investigations within the social and behavioral sciences.
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528 LOMBARDI AND PASTORE

TABLE 1

Fit Indices

Index Reference Direction Range

GFI Jöreskog and Sörbom (1984) Large is good � 1

AGFI Jöreskog and Sörbom (1984) Large is good � 1

ECVI Browne and Cudeck (1993) Small is good > 0

SRMR Jöreskog and Sörbom (1984) Small is good � 0

Bentler (1995)

RMSEA Steiger and Lind (1980) Small is good � 0

CFI Bentler (1990) Large is good Œ0; 1�

NNFI Bentler and Bonett (1980) Large is good Can fall

(or TLI) Tucker and Lewis (1973) outside Œ0; 1�

NFI Bentler and Bonett (1980) Large is good Œ0; 1�

Note. GFI D Goodness of Fit Index; AGFI D Adjusted Goodness of Fit Index; ECVI D

Expected Cross Validation Index; SRMR D Standardized Root-Mean-Square Residual; RMSEA D

Root-Mean-Square Error of Approximation; CFI D Comparative Fit Index; NNFI D Nonnormed

Fit Index; NFI D Normed Fit Index.

Now we are in the position to provide all details of our simulation design.

Four factors were systematically varied in a complete four-factorial design:

1. The model type (MT), at three levels: M1, M2, and M3 (see Figure 1);

2. The sample size (I), at two levels: 100 and 200;

3. The estimation procedure (E), at two levels: maximum likelihood (ML)

and full weighted least squares (WLS), also known as the asymptotically

distribution free estimator; and

4. The percentage of replacements (K) for the endogenous variables in the

SEM model at 11 levels: 0%; 10%; : : : ; 100%.

Let t; i; e, and k be distinct levels of factors MT, I, E, and K, respectively.

Moreover, let AS (number of Acceptable Solutions) be a counting variable used

to control the flow chart of the simulation design. The following procedural

steps were repeated for each of the 132 combinations of levels .t; i; e; k/ of the

simulation design:

1. Set AS D 0.

2. Generate a raw-data set D with size i according to model t . The data

generation was performed using a standard Monte Carlo (MC) procedure

based on multivariate normal data (Fan, Felsovalyi, Sivo, & Keenan, 2002;

Kaiser & Dickman, 1962).

3. Discretize D on a 5-point scale using the method described by Jöreskog

and Sörbom (1996b).
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SENSITIVITY OF FIT INDICES TO FAKE DATA PERTURBATION 529

4. Fit model t using the polychoric correlation matrix of the discretized data

D; if the model yields an acceptable solution (according to the estimation

procedure e), then proceed to Step 5; otherwise, go back to Step 2.

5. Construct a fake data matrix F of the discretized data D using the condi-

tional replacement probability with probability of replacement ™F D k
100

(see Equation (5)).

6. Fit model t using the polychoric correlation matrix of the fake data set

F; if the model yields an acceptable solution (according to the estimation

procedure e), then increment AS (+1), save the fake matrix F for later

analyses, and proceed to Step 7; otherwise, go back to Step 2.

7. Stop if variable AS counts 4,000 acceptable solutions; otherwise, go to

Step 2.

This algorithm was used to generate 4,000 distinct matrices F for each com-

bination of levels .t; i; e; k/ of the SGR simulation design. This number of

replications was chosen to achieve reasonable estimation stability in the tail

regions of the fit indices. Finally, for each of the 4,000 perturbed data matrices

F the eight fit indices were evaluated and the results saved for later analyses.

Note that in Step 5, if k D 0, then the fake matrix F reduces to the data matrix

D (Step 3) as the probability of replacement ™F boils down to zero (see Equation

(5)). The whole procedure generated a total of 528,000 D 4,000 � 3 � 2 � 2 � 11

new fake matrices as well as an equivalent number of fit indices results.

Some important comments are in order concerning the discretization proce-

dure adopted in Step 3. After sampling continuous data from the distribution

described in Step 2, we transformed these samples into five-category ordinal

data by applying a set of thresholds that remained constant across all data D. In

our simulation design the discretization procedure was based on the maximum

likelihood (ML) assumption (Flora & Curran, 2004). Because a five-category

ordinal variable has four distinct thresholds, �1 < ’1 < ’2 < ’3 < ’4 < C1,

the normal quantiles, �1.53, �0.49, 0.49, and 1.53, were used as corresponding

threshold values. The four quantiles were computed using the inverse of the

binomial cumulative distribution function (CDF; Jöreskog & Sörbom, 1996b).

Finally, the original continuous data set D was discretized into symmetrically

distributed ordinal variables (Step 3) on the basis of the four threshold values.

Data Source and Statistical Analyses

Data were simulated using a combination of R scripts (R Development Core

Team, 2010). Model fitting and estimation were implemented through LISREL

package (Jöreskog & Sörbom, 1996a). For each replication, the relevant fit

indices’ results were saved for later analyses. Because the fit indices considered

in this study showed a nonzero level of skewness and kurtosis (see Table 2 for
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530 LOMBARDI AND PASTORE

TABLE 2

Descriptive Statistics of the Fit Indices

Index (y) M SD Min Max Skewness Kurtosis Recoded Variable (y�)

GFI 0.90 0.04 0.71 0.99 �0.56 �0.48 y� D 1 � y

AGFI 0.86 0.06 0.58 0.98 �0.60 �0.31 y� D 1 � y

ECVI 0.98 0.49 0.33 3.38 0.64 �0.53

SRMR 0.06 0.02 0.02 0.16 0.65 0.08

RMSEA 0.04 0.03 0.00 0.18 0.13 �0.32 y� D y C :1

CFI 0.97 0.07 0.00 1.00 �4.01 20.79 y� D 1 � y C :1

NNFI 0.96 0.10 �25.99 9.83 �23.69 6,281.28 y� D 1 � y C max.y/

NFI 0.90 0.10 �0.16 0.99 �2.13 5.15 y� D 1 � y C :1

Note. The last column reports the recoding equation for the negative skewed indices. M D

mean; SD D standard deviation. Fit indices described in the table note of Table 1.

some descriptive statistics), a natural choice to model this data would be the

Gamma distribution (McCullagh & Nelder, 1989; Dobson, 2002; Wood, 2006).

Therefore, generalized linear models (GLM) were used as primary statistical

analysis to evaluate how the fit indices values were systematically influenced

by the design factors. In particular, all the GLM models used in our analyses

were based on the Gamma family with inverse link function. However, because

a correct application of the Gamma family requires nonnegative data and sym-

metrically or positively skewed data distributions, we transformed all the indices

that showed negative values or a negative skewness into new variables with

correct ranges and skewnesses. The transformation was performed according to

the recoding equations described in Table 2. Finally, all the Gamma regression

models included the main factor terms (I, MT, E, and K) and all the interaction

terms as independent variables.

The GLM analysis allows us to partition the deviance of a model fit index

into different components contributed to the design factors. For each fit index,

the deviance attributable to a factor (Dsource) and the null deviance (Dnul l ), that

is, the deviance for the GLM model with just a constant term, were used to

obtain the effect size for the GLM factor:

® D 100 �
Dsource

Dnul l

:

The ® statistic can be understood as that percentage of deviance explained in a

dependent variable attributable to a factor in the GLM model. In other words,

the ® value of a dependent variable represents the sensitivity of that dependent

variable to different design factors. Note that this statistic is invariant to the

recoding scheme reported in Table 2 as the transformed variables only affect the

sign of the parameter estimates of the GLM models.
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SENSITIVITY OF FIT INDICES TO FAKE DATA PERTURBATION 531

RESULTS

Table 3 reports the measures of fit for the Gamma GLM models used to study

what design factors influence the variation of the fit indices values in the

simulation design. Table 4 presents the portion of deviance ® explained in a

fit index attributable to the design factors and their interactions. An ideal fit

index should be sensitive to fake perturbations and should not be sensitive to

other irrelevant factors, such as model types (in particular model size: M1 vs.

M2) and sample size conditions (I D 100, 200). More specifically, we would

expect that a large proportion of deviance ® in a fit index would be attributable

to the relevant factor K and to the difference between M1 and M3. However,

the proportion of deviance in a model fit index attributable to I and MT (in

particular M1 vs. M2) should be minimal. Finally, we also expect that the fit

indices would be sensitive to the estimation procedure particularly when fake

data sets show a strong level of asymmetries in the marginal distributions of the

ordinal values due to the asymmetric perturbation process. In this latter scenario

WLS might still represent a more robust estimation procedure, although some

problems may occur when it is used with small sample sizes (Flora & Curran,

2004). Table 4 suggests that, for the conditions in this study, the fit indices

exhibited different behaviors. Half of the fit indices (GFI, AGFI, ECVI, and

SRMR) showed undesirable high sensitivity to sample size conditions. The other

half (RMSEA, CFI, NNFI, and NFI) was clearly less sensitive to sample size

with proportion of deviance attributable to factor I being about 12% or lower.

Overall this result indicates that the values of all the fit indices considered in

our simulation study are systematically affected (to different degrees) by sample

size.

As shown in Table 4, for the model type conditions, four indices (GFI, AGFI,

ECVI, and NFI) showed high sensitivity to different SEM models with their

proportion of deviance attributable to MT being about 24% or higher, whereas

SRMR, RMSEA, CFI, and NNFI were clearly less sensitive to this factor. To

better understand the behaviors of the fit indices on the effects of different target

models, we recalculated the effect size of factor MT on the basis of the two

following conditions: (a) MT recoded with two levels: M1 and M2 and (b) MT

recoded with two levels: M1 and M3. Table 5 presents the results for the new

recoded factors. As discussed in the previous section, an ideal fit index shoud

show more sensitivity to the difference between M1 and M3 (fake proportion

condition) and less sensitivity to the difference between M1 and M2 (model size

condition). Table 5 also shows a simple descriptive statistic, (a-b), denoting the

difference between the ® value of the recoded factor M1 versus M2 (a) and the

® value of the recoded factor M1 versus M3 (b). A good fit index should have

a negative value for this statistic. A quick inspection of Table 5 immediately

shows that the behaviors of AGFI, RMSEA, NNFI, and NFI are consistent with
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SENSITIVITY OF FIT INDICES TO FAKE DATA PERTURBATION 533

TABLE 4

Partitioning the Deviance (®) of Goodness-of-Fit Indices

Source GFI AGFI ECVI SRMR RMSEA CFI NNFI NFI

K 0.89 1.13 0.21 16.01 0.29 18.14 6.49 30.00

I 38.10 49.67 42.55 45.95 3.31 6.44 2.20 12.38

MT 40.46 24.30 46.62 7.43 2.36 7.12 2.46 23.67

E 0.53 0.72 2.83 0.20 40.67 36.00 23.25 9.88

K by I 0.06 0.07 0.01 0.42 0.04 0.09 0.56 0.49

K by MT 0.03 0.02 0.00 0.36 0.06 1.32 1.73 0.96

I by MT 3.02 2.11 3.90 0.10 0.05 0.20 0.56 0.35

K by E 0.29 0.41 0.25 0.25 3.01 3.11 8.89 0.12

I by E 0.00 0.00 0.45 0.00 0.10 0.61 2.68 0.00

MT by E 0.18 0.21 0.13 0.03 0.94 0.57 2.31 0.42

K by I by MT 0.01 0.01 0.00 0.02 0.01 0.05 0.29 0.14

K by I by E 0.00 0.00 0.01 0.00 0.12 0.00 0.96 0.01

K by MT by E 0.06 0.05 0.01 0.02 0.05 0.08 1.78 0.07

I by MT by E 0.00 0.00 0.03 0.00 0.00 0.02 0.30 0.02

K by I by MT by E 0.00 0.00 0.00 0.00 0.00 0.04 0.17 0.00

Note. K D percentage of replacements; I D sample size; MT D model type; E D estimation

procedure. Fit indices described in table note of Table 1.

this expectation, whereas GFI, ECVI, SRMR, and CFI are not. In particular, NFI

showed the largest negative difference (�19.07), whereas ECVI was the index

with the worst performance (11.13).

Finally, for the percentage of replacement conditions, SRMR, CFI, NNFI, and

NFI showed high sensitivity to increasing amount of faking with their proportion

of deviance attributable to K being about 16%, 18%, 6%, and 30%, respectively.

The other four indices, GFI, AGFI, ECVI, and RMSEA were less sensitive to

data replacements. In particular, factor K accounted for a very low amount of

variation in ECVI and RMSEA (resp. only 0.21% and 0.29%). Interestingly,

CFI, NNFI, and NFI were also sensitive to estimation procedure. However, the

TABLE 5

Deviance (®) of Goodness-of-Fit Indices for the MT Recoded Factors

Source MT GFI AGFI ECVI SRMR RMSEA CFI NNFI NFI

(a) M1 vs. M2 43.52 23.26 54.91 9.43 0.30 2.21 1.10 3.29

(b) M1 vs. M3 42.94 28.35 43.78 0.42 3.10 3.77 0.51 22.36

(a-b) 0.58 �5.09 11.13 9.01 �2.80 �1.56 0.59 �19.07

Note. (a-b) indicates the difference between the ® value of the recoded factor M1 versus M2

and the ® value of the recoded factor M1 versus M3. A good fit index must show a negative value

for (a-b). Fit indices described in the table note of Table 1.
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534 LOMBARDI AND PASTORE

FIGURE 2 Means of Comparative Fit Index (CFI) as a function of percentage of

replacements, models of faking, and sample size. Segments represent 95% interquantile

intervals. Top panel: maximum likelihood estimation procedure. Bottom panel: weighted

least square estimation procedure (color figure available online).

fit index with the highest sensitivity to estimation procedure was RMSEA with

its proportion of deviance attributable to E being about 41%.

Based on the preliminary results presented in Tables 4 and 5 we would

tentatively consider CFI, NNFI, and NFI as having the more ideal behaviors

expected from a model fit index. However, to further explore the behaviors of

these best performing fit indices, in the next section we graphically display their

functional patterns and compare this new analysis with the results of this section.

Graphical Analysis

Figure 2 shows the observed means of CFI as a function of factors K, I, and

E, respectively. Segments represent 95% interquantile intervals. For the model

size condition, M3 yielded on average better fits than the smaller model M1 thus

confirming the results reported in Table 5. For the sample size effect, the I D

200 condition yielded better performances in all three SEM models only when

the ML estimation procedure was used (Figure 2, top panel). By contrast, the

effects of K, I, and MT disappeared in the WLS condition (Figure 2, bottom

panel). Very similar results can be observed for the NNFI index (Figure 3).
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SENSITIVITY OF FIT INDICES TO FAKE DATA PERTURBATION 535

FIGURE 3 Means of Nonnormed Fit Index (NNFI) as a function of percentage of

replacements, models of faking, and sample size. Segments represent 95% interquantile

intervals. Top panel: maximum likelihood estimation procedure. Bottom panel: weighted

least square estimation procedure (color figure available online).

Figure 4 presents the patterns of NFI. This index showed the largest sensi-

tivity to fake perturbation. In particular, the NFI mean decreased by increasing

levels of replacements (K), that is to say, it degraded with larger amounts of

fake perturbations. NFI was also less sensitive to sample size and model type

conditions. Finally, in the WLS condition the effect of replacements was clearly

still present as well as the effect attributable to M1 versus M3 compared with

that of M1 versus M2. Overall, NFI resulted as the best and most reliable fit

index.

EMPIRICAL APPLICATION

The SGR approach is illustrated using data from a questionnaire about

(non)compliance in liver transplant patients. The current section is divided into

two subsections: the first introduces the empirical data set and the result of a

simple SEM model fitted to the data; the second discusses how we can use SGR

to compare the performances of two distinct generative models with respect to

a faking-good scenario.
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536 LOMBARDI AND PASTORE

FIGURE 4 Means of Normed Fit Index (NFI) as a function of percentage of replacements,

models of faking, and sample size. Segments represent 95% interquantile intervals. Top panel:

maximum likelihood estimation procedure. Bottom panel: weighted least square estimation

procedure (color figure available online).

Original Data Set and SEM Model

Progress in the techniques of transplantation has increased significantly life

expectancy of many patients affected by serious diseases. Nevertheless transplan-

tation invariably includes the acceptance of a lifelong pharmaceutical regimen in

the absence of which every surgical effort is invalidated. The lack of adherence to

therapies is one of the principal risk factors for patients after surgery (Matinlauri,

Nurminen, Hockerstedt, & Isoniemi, 2005). Moreover, risk behaviors such as

smoking and drinking alcohol while following the therapeutical regimen can

seriously affect results of medical treatments (Cuadrado, Fabrega, Casafont, &

Pons-Romero, 2005). In this context, social desirability factors may drastically

limit the validity of self-report measures about risk behaviors. So, for example,

a patient diagnosed with alcohol dependence who follows a pharmaceutical reg-

imen after the liver transplant would deliberately answer fraudulently a question

about drinking alcohol due to abstinence from ethanol (Foster et al., 1997).

In this application we studied the potential impact of fake-good responses

on the relationships between compliance indicators and safe behaviors indica-

tors in a group of 134 patients (30 women, 104 men) recruited in the local
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SENSITIVITY OF FIT INDICES TO FAKE DATA PERTURBATION 537

transplantation center of Veneto district (Northeast Italy) during a period of 3

years (2003–2006). Ages ranged from 29 to 65, with a mean of 53.3 and a

standard deviation of 7.6. Moreover, a relevant proportion of patients (84.4%)

was suffering from alcoholic cirrhosis or Hepatitis C virus (HCV) cirrhosis at the

time of the first visit. Data was collected using six self-report ordinal measures

selected from a larger survey about (non)compliance in liver transplant patients:

� Safe behaviors items

—I smoke often (0), sometimes (1), never (2).

—I drink alcohol often (0), sometimes (1), never (2).

—I use drugs often (0), sometimes (1), never (2).

� Compliance items about pharmacological treatments, medical visits, and

patient-physician communication

—I forget the treatment often (0), sometimes (1), never (2).

—I forget the visit often (0), sometimes (1), never (2).

—I forget communications often (0), sometimes (1), never (2).

The resulting (134 � 6) data matrix was subjected to an SEM model with two

latent variables (one for each group of measures). More precisely, each measured

variable loaded on its corresponding single latent variable (see Figure 5). Further,

the compliance factor was regressed on the safe behaviors factor. The expected

result is that a patient showing an high level for safe behaviors (resp. an

high level for risk behaviors) should be characterized by a compliance (resp.

noncompliance) profile.

SGR Analysis

In fitting the SEM models we opted for ML as the alternative full WLS is usually

better suited for estimations based on larger sample sizes (Flora & Curran,

2004). Moreover, although it does not have theoretical justification for use with

ordinal variables, ML still performed well in our SGR simulation study (see also

Yang-Wallentin, Joreskog, & Luo, 2010). Specifically ML seemed to boost the

sensitivity of fit indices to fake perturbations.

The result of the original SEM model was poor (CFI D .919, NFI D .897,

NNFI D .847) and showed a nonsignificant value for the regression parameter

denoting a lack of association between the two factors in the model. However,

the observed result may have been affected by fake observations. This hypothesis

was supported by the strong ceiling effects observed in the data (see Table 6).

An SGR analysis was used to evaluate the impact of eventual fake-good data

on the SEM model’s performance. In the first step, we defined two generative

SEM models (M0 and M1) representing two alternative hypothetical true models

for the data. The two generative models had the same structure of the original
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538 LOMBARDI AND PASTORE

TABLE 6

Descriptive Statistics for the Six Observed Ordinal Variables

Often

%

Sometimes

%

Never

%

Safe behaviors variables

Smoking 14.93 28.36 56.72

Drinking alcohol 0 29.10 70.90

Drug consumption 0 21.64 78.36

Marginal % 4.97 26.37 68.66

Compliance variables

Forgetting the treatment 0 49.25 50.75

Forgetting the visit 0 42.54 57.46

Forgetting communications 0 38.06 61.94

Marginal % 0 43.28 56.72

SEM model, but they differed with respect to the value of the structural parameter

between the two latent variables. In particular, in model M0 the structural

parameter was set to 0.05 denoting a weak association between the safe behaviors

latent dimension and the compliance latent dimension, whereas in model M1 the

structural parameter was set to 0.95 denoting a strong association between the

two latent dimensions. All the other components (parameters’ values) were set to

identical values in M0 and M1 (see Figure 5). In particular, the loadings for the

safe behaviors factor were all set to the hypothetical true value 0.6, whereas the

FIGURE 5 SEM model for the six ordinal variables: smoking (x1), alcohol drinking (x2),

drug consumption (x3), pharmacological treatments (y1), medical visits (y2), and patient-

physician communication (y3). The values reported in italic type represent the nonsignificant

parameters of the original SEM model fitted on the observed data. The values in parentheses

are the true parameters values of the two generative models M0 and M1 .
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SENSITIVITY OF FIT INDICES TO FAKE DATA PERTURBATION 539

loadings for the compliance factor were set to the original estimated values: 0.82

(pharmacological treatments), 0.88 (medical visits), and 0.76 (patient-physician

communication), respectively. The two generative models were used to simulate

new data without any ceiling effect for the safe behaviors variables.

In the second step we implemented the fake-good model (Equation (5)). In

particular, the percentage of replacements (K) for the safe behaviors variables

were set at 37 distinct levels ranging from 10% to 80% (by a step of 2%). In

sum, we assumed fake-good perturbations only for the risk behaviors items. The

compliance variables were, instead, assumed not to be fake dependent. Finally,

for each generative model and each level of K, we generated 2,000 distinct fake

data matrices and saved the resulting NFI values.

The results of the SGR analysis are shown in Figure 6. The figure represents

the difference �NFI between the estimated density values corresponding to

the original NFI result (0.897) under the NFI distributions of M1 and M0

(respectively) as a function of percentage of replacements K. The results showed

that the weak dependency model M0 was preferred to the strong dependency

model M1 (negative �NFI ) up to a level of faking of approximately 60%. By

contrast, the SGR results were on average more in favor of M1 (positive �NFI )

when larger amounts of faking were considered. In other words, if we assume

that a large proportion of patients (� 60%) manipulated their answers on the

risk behaviors items, then the observed goodness-of-fit result (NFI D 0.877) will

be more consistent with a true SEM model representing a strong dependence

FIGURE 6 Difference �NFI between the estimated density values corresponding to the

original Normed Fit Index (NFI) result (0.897) under the NFI distributions of M1 and M0

as a function of percentage of replacements K. For each level k of replacement and each

generative model, the simulated NFI distribution was approximated by using a kernel density

estimator with Gaussian kernel smoothing (Sheather & Jones, 1991).
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540 LOMBARDI AND PASTORE

between the two latent dimensions. In this hypothetical scenario, a patient taking

behavioral risks will also be a noncompliant patient.

DISCUSSION AND FINAL CONCLUSIONS

In situations where a model is fitted on empirical data containing possible fake

measurements, a fit index that evaluates that model may not be very helpful in

deciding whether or not it can be appropriate in representing the relationships

under study. In particular, we would expect that a good fit index should approach

its maximum under correct model specification and uncorrupted data but also

degrade substantially under massive fake data. Because standard fit indices are

designed to detect model misspecification, but they are not designed to detect the

eventual presence of fake observations in the data, it is important to evaluate their

behavior in faking scenarios. Previous research in this area has not adequately

examined the issue of fit indices’ sensitivity to fake data perturbation. As far as

we know, this is the first time that the effect of fake data on fit indices has been

systematically evaluated in a simulation study.

The results of our SGR simulation study lead us to believe that none of the

fit indices considered in this article really stood out as having ideal behavioral

patterns: sensitive to fake perturbations and/or faking model type but insensitive

to model types and sample size. However, important local differences were

observed between the indices. More specifically, three indices (CFI, NNFI, and

NFI) showed considerable sensitivity to fake perturbation in the ML estimation

condition, but only NFI resulted sensitive to fake data also in the WLS estimation

condition. By contrast, GFI, AGFI, RMSEA, and ECVI were among the indices

less sensitive to data replacement but largely sensitive to sample size and model

size (e.g., M1 vs. M2). In particular, for the model size condition, the results

show that ECVI would penalize larger models and reward smaller models even

when the models were equated in terms of fake perturbation intensity. This

result is not difficult to understand and immediately derives from the formal

definition of this index. A quick inspection of the ECVI equation reveals that

this absolute index includes a penalty term that is an increasing function of the

number of estimated parameters, and this explains the observed ECVI pattern as

described earlier. These results are also consistent with those discussed in other

research about the sensitivity of absolute fit indices to sample size and model

size (Breivik & Olsson, 2001; Fan & Sivo, 2007; Hu & Bentler, 1998; Kenny

& McCoach, 2003).

SRMR yielded an intermediate performance. More precisely, this index showed

a desirable sensitivity to fake perturbations but also a relevant sensitivity to

sample size and model size (M1 vs. M2; see Table 5). In particular, SRMR had

the tendency to yield better fit values (smaller value of SRMR) as the number
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SENSITIVITY OF FIT INDICES TO FAKE DATA PERTURBATION 541

of observed variables increased in the model. Therefore, unlike ECVI, SRMR

would penalize less complex smaller models.

Our results demonstrate empirically that the incremental fit indices used in our

study (CFI, NNFI, and NFI) were clearly more sensitive to fake perturbation

than the absolute fit indices (GFI, AGFI, and ECVI), at least when the ML

estimation procedure was considered. Therefore, it is natural to ask why such a

difference exists. In particular, what in the incremental fit indices disposes them

to be affected more by increasing levels of replacements in the observed data? In

what follows, we propose a tentative answer to this important question. Because

all the fit indices are based on a transformation of the minimum statistic TT of

the maximum likelihood function FML.RF; O†F/, we studied how the polychoric

correlation matrix RF was affected by increasing levels of fake replacements

in the data. The main result was that the average correlations decreased by

increasing the amount of fake data perturbations as fake observations usually

tend to weaken the original relationships in the data. One obvious consequence

is that the correlation matrices also tend toward the identity matrix I. In SEM

literature I denotes an independent or null model that assumes zero population

correlations among the observed variables. Note that absolute fit indices evaluate

the model fit of the hypothesized model without a comparison with a baseline

model, whereas relative fit indices measure the specific improvement in model

fit of the hypothesized model relative to a baseline model, such as, for example,

the null model (Bollen & Curran, 2006). In particular, comparative fit indices

assign larger values (better fits) to those target models that have larger distances

from the baseline model. Therefore, when the correlation matrix derived from

the perturbed data tends toward matrix I, a comparative fit index will penalize

the target model, thus reflecting a larger sensitivity to fake perturbation com-

pared with absolute fit indices. However, the difference between some of the

incremental fit indices (CFI and NNFI) and the absolute fit indices disappears

when the WLS estimation procedure is considered. It is difficult to explain why

in the WLS condition the two incremental fit indices were unsensitive to fake

perturbation. A tentative answer might call for asymmetric representations in

the data, which are typical of fake-good perturbations. In this condition WLS

could have masked the effects of data replacements due to a sort of absorbtion

effect. Moreover, it is also remarkable that in our simulation study full WLS

outperformed ML in terms of number of acceptable solutions (approximately

30% more) in fitting the SEM models.

Nonetheless, we still believe that a deeper understanding of the interac-

tion between fake observations and estimation methods is necessary and wor-

thy of further investigation in the study of SEM-based fit indices. For exam-

ple, a new simulation study could also involve additional estimation methods

(e.g., robust WLS) as well as larger sample sizes to better evaluate some

estimation methods (e.g., full WLS) that apparently require larger sample sizes
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542 LOMBARDI AND PASTORE

(maybe in the thousands) to fully avoid estimation biases (see Flora & Curran,

2004).

Implications for Applied Research and Future Directions

There are several specific implications of our findings with respect to using

model fit indices in practice. First, our findings suggest that NFI outperforms

all the other fit indices considered in our simulation study. Therefore, we rec-

ommend including NFI in the ideal battery of model fit indices to evaluate the

effect of eventual fake observations in the data. Second, it is highly probable

that fit indices are normally not able to distinguish between fake-good and

fake-bad data. In a previous version of the article we also tested the fit indices

to different faking conditions. In particular, in a preliminary simulation study

all the fit indices were fully insensitive to the difference between fake-good

and fake-bad scenarios. This result indicated that the fit indices are totally

unable to account for any kind of polarity in the fake perturbation of the data.

In practice, however, this might not be a serious concern as in an empirical

context is usually not difficult to guess what kind of faking process may affect

participants’ responses. An example regarding the effect of faking good in self-

report measures of compliance in liver transplant patients has been discussed in

this article. In general, if data have been collected for studying some stigmatizing

characteristics (e.g., risky sexual behavior or drug addictions), then a fake-good

manipulation appears to be the natural faking polarity for this kind of data.

Finally, there are also some important practical implications that characterize

SGR at a more general level. SGR is defined by a two-stage sampling pro-

cedure based on two distinct and well-separated generative models: the model

representing the process that generates the data prior to any fake perturbation

and the model representing the faking process to perturb the data. Therefore,

the overall generative problem is split into two conceptually independent and

possibly simpler components (divide et impera approach). This makes SGR

different from other statistical models, which, instead, try to model the fake

problem directly in the original statistical model by using ad hoc empirical

paradigms such as ad lib faking or coached faking to collect data and simulate

fake reports (Zickar, Gibby, & Robie, 2004; Zickar & Robie, 1999). SGR is

also different from person-fit analysis (e.g., Meijer & Sijtsma, 2001), which

is used to investigate the validity of item-score vectors in the IRT framework.

Within these distinctions SGR seems more related in spirit to uncertainty analysis

(Morgan, Henrion, & Small, 1990) and careless responding analysis (Woods,

2006), which are characterized by an attempt to directly quantify uncertainty of

general statistics computed on the data. Finally, new relevant SGR developments

may indeed lie in applying it to diverse problems beyond those considered here

(i.e., for different types of data and/or with different probabilities of faking for
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SENSITIVITY OF FIT INDICES TO FAKE DATA PERTURBATION 543

statistical units and different conditional distributions of faking not necessarily

based on uniform kernels).

In sum, the SGR approach has several advantages for analyzing possible

fake data. SGR offers a conceptually new approach, which is general, flexible,

and works well in practice. Overall, the essential characteristic of SGR is its

explicit use of mathematical models and appropriate probability distributions

for quantifying uncertainty in inferences based on possible fake data. Moreover,

SGR involves the derivation of new statistical results as well as the evaluation of

the implications of such new results: Are the substantive conclusions reasonable?

How sensitive are the results to the modeling assumptions about the process

of faking? Because of its simplicity, general applicability, and originality, we

strongly believe SGR will prove to be of great value in all those psychological

fields that face the problem of studying sensitive topics.
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